Eigenvalues of Toeplitz Matrices in the Bulk of the Spectrum
نویسنده
چکیده
The authors use results from [6, 7] to analyze the asymptotics of eigenvalues of Toeplitz matrices with certain continuous and discontinuous symbols. In particular, the authors prove a conjecture of Levitin and Shargorodsky on the near-periodicity of Toeplitz eigenvalues.
منابع مشابه
Properties of matrices with numerical ranges in a sector
Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruen...
متن کاملEigenvalues and Pseudo-eigenvalues of Toeplitz Matrices
The eigenvalues of a nonhermitian Toeplitz matrix A are usually highly sensitive to perturbations, having condition numbers that increase exponentially with the dimension N. An equivalent statement is that the resolvent ( ZZ A)’ of a Toeplitz matrix may be much larger in norm than the eigenvalues alone would suggest-exponentially large as a function of N, even when z is far from the spectrum. B...
متن کاملOn the asymptotic spectrum of Hermitian block Toeplitz matrices with Toeplitz blocks
We study the asymptotic behaviour of the eigenvalues of Hermitian n × n block Toeplitz matrices An,m, with m ×m Toeplitz blocks. Such matrices are generated by the Fourier coefficients of an integrable bivariate function f , and we study their eigenvalues for large n and m, relating their behaviour to some properties of f as a function; in particular we show that, for any fixed k, the first k e...
متن کاملExtreme eigenvalues of real symmetric Toeplitz matrices
We exploit the even and odd spectrum of real symmetric Toeplitz matrices for the computation of their extreme eigenvalues, which are obtained as the solutions of spectral, or secular, equations. We also present a concise convergence analysis for a method to solve these spectral equations, along with an efficient stopping rule, an error analysis, and extensive numerical results.
متن کاملAn application of Fibonacci numbers into infinite Toeplitz matrices
The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p
متن کامل